IV Semester M.Sc. Examination, June 2017 (CBCS Scheme) CHEMISTRY C-404: Spectroscopy – III (Common to IC / AC / PC) Time: 3 Hours Max. Marks: 70 Instruction: Answer Question No. 1 and any five of the remaining. 1. Answer any ten of the following: $(10 \times 2 = 20)$ - a) What are isotropic and anisotropic coupling constants? - b) Assign the structure of Cl₂O molecule. It shows three intense bands at 688 cm⁻¹, 320 cm⁻¹ and 969 cm⁻¹ in IR spectrum. - c) Using solid state NMR, how do you characterize the structure of PCl₅. - d) Define "Magic Angle Spinning" and list its advantages. - e) Calculate the ESR frequency for an unpaired electron in a field of 0.5T. - f) From ¹⁹F NMR, predict the possible structure of BrF₅. - g) Explain the terms nuclear electric quadrupole moment and electric field gradient. - h) A Mössbauer nucleus of mass 2 $\times 10^{-25}$ kg emits γ ray of wavelength 0.2 nm. Calculate the recoil velocity. (h = 6.626×10^{-34} JS). - i) Br₂ shows NQR and not F₂. Why? - j) What is Frozen Orbital approximation? - k) Mention any two uses of EELS. - I) How many peaks would result in the Auger Electron Spectrum of - i) Hydrogen - ii) Carbon - iii) Sodium? - a) Explain hyper Raman phenomenon using relevant equation. Sketch the transitions involved and differentiate them into hyper-stokes and hyper-antistokes lines. - b) How does a photoacoustic signal arise? Using a block diagram explain the processes involved in photoacoustic effect. (6+4=10) - 3. a) Define Linkage isomerism. Using suitable example, explain the importance of IR spectroscopy to characterize any one of the linkage isomer. - b) List the various possibilities of carbonate coordination mode with metal and the corresponding changes that occur in IR. (5+5=10) - 4. a) Define isomer shift and establish its relationship with S-electron density. - b) Outline the effect of an external magnetic field on the NQR spectrum. (6+4=10) - 5. a) Predict and explain ³¹P NMR spectrum of [Rh(Ph₃P)₃]+ClO₄⁻ using ¹⁰³Rh ³¹P coupling. - b) Draw ³¹P NMR spectra for α and β isomers of P_4S_4 . - c) Sketch and explain ¹¹B NMR spectrum of diborane. (4+3+3=10) - 6. a) Give the theory and experimental details of inverse Raman process. - b) List the applications of Resonance Raman spectroscopy. (5+5=10) - 7. a) How are XANEs and EXAFs different from each other? Elaborate on the principle underlying EXAFs technique. - b) Explain quadrupolar interaction in Mössbauer spectroscopy with suitable example. Comment on the relative magnitudes of quadrupolar splitting in tetrahedral and square planar SnCl₄. - 8. a) Explain ENDOR and ELDOR techniques. - b) Draw EPR spectra for : c) Determine g values of Ni²⁺ complex at magnetic field of B_{\perp} 300.2 and B_{11} 255.1 MT (Reference DPPH at 328.63 MT). (4+3+3=10)